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Abstract 

Let f(z) = 1; g(z)[i , i] ds be the action integral on a semiriemannian manifold (M, g) defined 
on the space of the curves z : [0, l] + M joining two given points zo and ~1. The critical points of 
f are the geodesics joining zo and ZI. Let s E [0, 11. We study the behavior, in dependence of s, of 
the eigenvalues of the Hessian form of f evaluated at z, restricted to the interval [0, s]. A formula 
for the derivative of the eigenvalues is given and some applications are shown. 0 1998 Elsevier 
Science B.V. 

Subj. Class.: Differential geometry 
1991 MSC: 35A15,53(350 
Keywords: Semiriemannian geometry; Variational calculus 

1. Introduction and statement of the results 

Let (M, g) be a semiriemannian manifold and consider the following eigenvalue 
problem: 

V,“&Y + R(i, &Ii = -Uox-,, Ta(O) = 0, CT(o) = 0, (1) 

where V, denotes the covariant derivative and R the curvature tensor for the metric g, and 
z is a geodesic. If h(a) = 0, (1) reduces to the Jacobi equations for the geodesic z and z(a) 
is said to be a conjugate point. 
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Clearly, the spectrum {h(a)} of the (1) (which in this case reduces to the set of the 
eigenvalues) is a function of CT. We call this function spectral$ow. 

The first result of this paper concerns the evaluation of the “derivative” of the spectral 
flow {h(c)} for simple eigenvalues. More exactly, we shall prove that, if k(a) is simple, the 
function d I-+ h(g) is smooth and 

k’(c) = -(Vsl-7 V&-)(u), (2) 

where { is an eigenvector relative to CT. 
By formula (2) we can deduce that, in Riemannian geometry, the spectral flow is strictly 

decreasing . Using this fact, it is possible to give a nice proof of the celebrated Morse index 
theorem on the number of conjugate points along a geodesic. Also (2) can be used to show 
that in semiriemannian geometry, the analogous of the Morse index theorem cannot exist 
in the same form (cf. Remark 3.8). 

In this paper we apply (2) to study of the geodesics joining two points in static Lorentzian 
manifolds of dimension 2. We recall that (M, g) is a standard static Lorentzian manifold if 

M=MoxR, g(-m, Cl = (4, ox - #wt2, 

where (MO, (-, .),) is a Riemannian manifold, /l : MO + R is a smooth positive scalar 
field on MO, z = (x, t) E M and 5‘ = (e, t) E T,M = TxMo x R. 

Assume that dim M = 2, so dim MO = 1. Then MO is diffeomorphic to Iw or to the unit 
circle S’. The following results hold. 

Theorem 1.1. Let (M, g) be a standard static Lorentzian manifold such that: 
(a) dimM =2andMo = R; 
(b) (MO, (., .)R) is complete; 
(c) Vx E MO, 0 < B(x) 5 N. 

Then: 
(1) every spacelike geodesic does not have conjugate points; 
(2) ifzo and z1 are causally related, there are no spacelike geodesics joining zo and ZI ; 
(3) ifzo and zlare not causally related, there is one and only one geodesic joining zo and 

z 1, and it is spacelike; 
(4) given any two points and zo and z 1 there is at most one spacelike geodesic joining them. 

In particular, by the above theorem, it happens that the points zo and z I can be joined by 
either spacelike or causal geodesics. 

If MO = S’ , by the results of [2], for any couple of points there exist infinitely many 
spacelike geodesics joining them. On the other hand, they have no conjugate points. 

Remark 1.1. Some results on the structure of conjugate points for spacelike geodesics have 
been obtained in [7]. In particular, it is shown that conjugate points on a spacelike geodesics 
are unstable. 
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2. Basic definitions and preliminary results 

Let (M, g) be a semiriemannian manifold, i.e. a smooth finite-dimensional manifold, 
equipped with a metric tensor g having an index v, 0 5 u 5 dim M. This means that for 
any z E M, g(z) [., .] is a nondegenerate bilinear form on the tangent space T,M at z, to M, 
having exactly u negative eigenvalues. If u = 0, (M, g) is called Riemannian manifold, 
while if u = 1, (M, g) is called Lorentziun manifold. For more details in semiriemamrian 
geometry see [l,lO]. 

For any interval [a, b] of [w and for any n E N, we denote by H 1,2 ([a, b] , an) the Sobolev 
space of the absolutely continuous curves, having a square integrable derivative. 

Let M be a smooth manifold, we consider the set ZY1,2([0, 11, M) of the continuous 
curves z : [0, l] + M such that for any local chart (U, PO> of the manifold, with U II 
z([O, 11) # 0, the curve z 0 vO-’ E H1,2(a(U), R”), n = dimM. It is well known (see 
for instance [ 111) that H’,2([0, 11, M) is equipped with a structure of infinte-dimensional 
Hilbert manifold, modeled on H’,2([0, 11, R’). For any z E H1,2([0, 11, M) the tangent 

Iv2 space T,H (I , 0 11, M) to H1,2([0, 11, M) at z is identified with 

TzH1*2([0, 11, M) = (c E HlT2([0, 11, TM): n o 5 = z}, 

where TM is the tangent bundle of M and rr : TM -+ M the projection map. 
Now, fix two points zo and zt in M and consider the set 

a1 = d(z,,z~,M) = {z E H’.2([0, 11, M): z(0) = zo. z(1) = zt]. (3) 

It is not difficult to see that Q1 is an infinite-dimensional submanifold of H 1,2([0, 11, M) 
and for any z E Q ’ the tangent space T,s2 ’ is given by 

T,C?’ = {< E TzHls2([0, I], M): c(O) = 0, ((1) = 0). (4) 

We consider the action integral f : Q1 + R defined as 

f(Z) = 1 &@))[i(s), i(s)] ds, 
0 

for any z E 52 ‘. It is well known that f is smooth and its critical points are geodesics, i.e. 
smooth curves satisfying 

v,i = 0, (5) 

where 0, 2 is the covariant derivative of i along z (induced by the metric structure g , cf. [ lo]). 
By (5) one immediately deduces the existence of a real constant E, such that for any 

z E [O, 11, 

E, = dz(s>)[i(sL i(s)I. (6) 

Then the geodesic z is called spacelike, lightlike or timelike, if E, is positive, null or negative, 
respectively. 
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Since z is a critical point of f it is the well-defined Hessian form of f at z, 

f”(Z)]<, (1 = -&ML .)))lh=O, 

where r](h, s) is a two-parameter map such that ~(0, s) = z(s), nh(O, s) = c(s), and 
{ E T&l. 

A standard computation shows that 

f”(z>Kt J‘l = /NW, VA-) - (R(i, Oi,O) ds, 
0 

(7) 

where R denotes the curvature tensor for the metric and we have denoted the metric g by 

(*, .). 
Integrating by parts in (7) shows that a vector field { # 0 is in the kernel of f”(z) if and 

only if 

V.;{ + R(i, {)i = 0, ((0) = 0, ((1) = 0. (8) 

Then { is in the kernel of f”(z) if and only if < is a JacobiJieZd (cf. [lo]) with null boundary 
conditions. 

Let z be a critical point off, for any s ~10, l] consider the functional f restricted to the 
interval [0, s]: 

defined on the manifold 

~2; (z) = {w E H132([0, s], M): w(O) = zo, w(s) = z(s)}. 

Note that zs = zll0,~1 is a critical point offs on C?i (z). We recall that a point z(s), s ~10, 11, 
is said to conjugate to zu along z if the kernel of f,“(z,) is nontrivial and the dimension 
of this kernel is called multiplicity to the conjugate point z(s) (by (8) the multiplicity of a 
conjugate point is always finite). The index P(Z) of the geodesic z is the number of conjugate 
points z(s), s ~10, l[, to zo along z, counted with their multiplicity. 

A very famous theorem due to M. Morse shows that in the Riemannian case, the Morse 
index of z (i.e. the maximal dimension of a subspace where f”(z) is negative definite) is 
equal to the index F(Z). These results can be proved studying the behavior of the eigenvalues 
h(a) of the problem 

V,“C, + R(i, &)i = -h(a)<,, 

0 ~10, I], whenever h(a) is nearby 0. 

G(O) = 0, C,(o) = 0, (9) 

In this paper we give a formula for the derivative of h(a) in problem (9) for any semirie- 
mannian manifold. Such a formula shows that, in the non-Riemannian case, the above result 
in general does not hold. 
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Using the derivative of A(a) we shall deduce some results for Lorentzian manifolds, in 
particular for standard static ones. 

3. The main theorem and first consequences 

In this section we fix a semiriemannian manifold (M, (., .)Z), two points zo, zt of M 
and a geodesic z : [0, 11 + M joining zu and zl . Let us consider the following problem 
which is the weak formulation of problem (9) 

lJ tJ 

s ((V,{, VJ’) - (R(i, C)i, C’)) ds = k(a) 
s 

(4-r <‘)R ds 
(10) 

;(oI=o, C(a)=& 
0 

for any 5’ E T,, 0: (z), where (a, .)R is an auxiliary Riemannian metric on M, < E 
T,, C2j (z). In this section we get a formula for the first derivative of h(a) with respect 
to C, giving some simple consequences of it. To avoid technical difficulties we shall only 
consider the case of simple eigenvalues. For multiple eigenvalues analogous results can be 
obtained studying 

liminf h(flf 8) - h(a) 
S-0 6 

and lim sup 
h(a + S) - h(a) 

6-O 6 . 

We need the following simple lemma. 

Lemma 3.1. Let H be a Hilbert space, L(H) the space of the continuous linear operators 
from H into itself and let A : [0, l] 4 L(H) be a smooth map. Let 00 ~10, l[, Au a simple 
eigenvalue of A(Q) and ~0 E H such that A(oo) IJO = ho110 and (Iv0 ]I = 1, where ]I . II is 
the norm of H. 

Then there exists a neighborhood U of a and smooth maps h(a) and v(a) defined on U, 
such thatfor any o E U, k(o) is a simple eigenvalue of A(o), ]]v(o) ]I= 1, I(CCJ) = kc 
and v(q) = ~0. 

Proof Let F : R x H x10, l[+ R x H be the map such that 

F(h, t.~, CY) = (A(u)v - hv, ]]v]]~ - 1). 

Since the partial derivative (i3F/a(h, v)) (ho, IJO, 00) : R x H + R x H is a linear isomor- 
phism, the Implicit function theorem gives the proof. 0 

Using Lemma 3.1 we obtain the following result for problem (10). 

Theorem 3.2. Let a0 ~10, l[, Ilc = A(Q) be a simple eigenvalue of (10) and CO = {(s, ~~00) 
be a normalized associated eigenfunction, i.e. lp (50, <O)R ds = 1. 
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Then there exists a neighborhood U of q and two smooth functions k(a) : U --z R, 
&, = {(s, (T) : U --+ TM such that: 
- for any o E U, h(a) is a simple eigenvalue of (lo), 
- CC E T,(,)fl~ (z) is a normalized associated eigenfunction, and 

h’(oo) = -(v~Co(oo)~ vSTo(oo))z. (11) 

Pro08 Let h(cr) and {,, = {(s, (T) as in Lemma 3.1. Since I,“(<, <)R ds = 1, by (10) we 
have 

Let A(z) : T,M + T,M be the linear operator such that 

(A(z)v, I& = (v, u’)~ VU, 21’ E T,M. 

Integrating by parts in (10) gives 

V,2G + R(i, G)i = -;l(a)A(z(s))C,, 

r0 (0) = 0, &r(a) = 0. 

Differentiating gives 

h’(0) = $ s ((vsr, Vsr), - (Wi, r)iv5‘M ds 
0 

= Ws(;(o, 01, Vsc(a, c))z - (R(i(a), z‘(o, a)>i(a), ((0, a>), 

+ s wcrvs5‘, vso, ds - s Y&W, CL?, 04 ds. 
0 0 

We claim that 

vcJv,r = V,V,C. 

To prove (14), consider the three-parameter map f (s, 0, CL) such that 

r(s, c, 0) = z(s), E(s, 6, 0) = 5‘6, a). 

Then 

$cvsrcs, a), VsC(s, O))Z = $ ( Vs~~s, 0, o>, v+, o,O) ) z 

=2 v,v~~(s,o,o),v~~(s,6,0) ( ) . z 

(12) 

(13) 

(14) 

Now, by a well-known formula in semiriemannian geometry (cf. [lo]), 
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( ar ar 
+R -&S’d,O), ~(S’d,O) 

> 
E(& 0, 0). 

On the other hand (ar/ao)(s, (T, 0) = 0, since r does not depend on cr. Then (14) holds. 

Now (R(C(a, D), i(a 0, u))z = 0 ( . since <(a, o) = 0). Then by (13) and the 
symmetric properties of the tensor R, 

c 

+ 
J 

(2(v,v,r, v,Oz - 2(Ni, V&k Uz)ds. 

0 

Integrating by parts and recalling the symmetric properties of the tensor R gives 

A’(u) = (VsS(fJ, 01, Vd(a, a)), 
+ 2(Vo4-(u, a>, Vs<(u, a>), - wfJr(o, a), VsC(O, u))z 

a 

- J (Wc71, V,2cL + 2(R(i, J)i, V,J‘)z) ds. 
0 

Then, from (lo), 

h’(a) = (VsJ‘(a, a), Vs4-(u, u))z 
+2(Vok-(u, a), VscT(O, a>), - Wd(O, u), vsca U))Z 

0 

+ 2 
J 

(Vu{, Ua)A(z(s))C(s, n))z ds. 

0 

Now, the boundary conditions in (9) give J‘(r, r) = 0 for any r and differentiating gives 

V,C(r, r) + Vdr, r) = 0, 

Moreover, since 5 (0, a) = 0 for any u, differentiating gives 

V,((O, u) = 0. 

Therefore 

0 

k’(u) = -(Vs<(u, a), Vsr(u, a))z + U(u) 
s 

(V,C, A(z(s))c(s, a)), ds. 

0 
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Now, since < (- , a) is normalized, 

1 = uK. 5‘)R ds = 

Cl 

J J 
(A(z)T, T)z ds. 

0 0 

Differentiating with respect to cr, since A(z) is symmetric and J‘(cr, a) = 0, gives 

cl 

0 = (A(z(a))C(a, c~)r(a, c))z + 2 
s 

(A(z)5‘, Vd-L ds 

0 
r3 

= 2 s MzX, Vc4, ds, 
0 

and the proof is complete. 0 

The following result is well-known. We report the simple proof for the sake of 
completeness. 

Lemma 3.3. Let ( be a Jacobijield along z satisfying (2.7). Then 

(i, V,C)Z = (2, {)Z = 0 vs E [O, al. 

Proo$ Take p(s) = (i(s), { (s))~ . Differentiating gives 

I” = (i(s), V,2{(s)), = -(i(s), R(i(r), r(s))i(r)), = 0, 

because of the antisymmetry of the curvature tensor. Since lp (0) = C+I (8) = 0 and lp” = 0, 
we deduce that p = 0 and (p’ = 0. 0 

Remark 3.4. If the eigenvalues of f”(z) are not simple, it is possible to see that the set of 
the limit points of the Newton quotient is given by 

I-(VG%r, a), VsT(o, a)),, C satisfies (3.1)]. 

An immediate consequence of Theorem 3.2 is a different proof that the eigenvalues are 
strictly decreasing in the Riemannian case (see [8]). 

Another simple consequence of Theorem 3.2 is the following: 

Theorem 3.5. Assume that (M, (., .),) is Lorentzian and z be timelike (i.e. (2, i), < Ofor 
any s). Then the eigenvalues are strictly decreasing. 

Proo$ Let < be a Jacobi field satisfying (l.l), by Lemma 3.3, (i, V,<), = 0, SO V,< is 
orthogonal to 2. Since i is timelike, V,[ is spacelike, i.e. (V,{, V,<), > 0, SO k’(a) < 0 

foranya. 0 



K Benci et al. /Journal of Geometry and Physics 27 (1998) 267-280 275 

Remark 3.6. Suppose now that is lightlike (i.e. (i, i), = 0). Approximating z by timelike 
geodesics, it is possible to prove that the eigenvalues h(a) are nonincreasing and there are 
no intervals contained in [0, l] where k(a) is constant and null. Indeed if z(q)) is conjugate 
to z(0) along z (i.e. ;i(q) = 0), it is isolated (cf. e.g. [lo, p. 2991). 

Remark 3.7. If (M, (., .)z) is a two-dimensional Lorentzian manifold and z is a spacelike 
geodesic (i.e. (i, i)Z > 0), then I is strictly increasing. Indeed in this case V,{ is 
orthogonal to a spacelike vector, so (since dimM = 2) V,{ is timelike. Then h’(a) = 

-(V,C, V,C), ’ 0. 

Remark 3.8. By Theorem 3.5 it is possible to get an index theorem considering only 
the timelike or lightlike geodesic. It is just the same as in the Riemannian case. More- 
over Theorem 3.2 shows that, in general, for spacelike geodesics the situation is more 
complicated. 

4. The static case 

In this section we shall apply the results of Section 3 to a standard static Lorentzian 
manifold. We recall that a (standard) static Lorentzian manifold (M, (a, .)z) satisfies 

M=Mr,xIW, (59 C)z = (69 ox - B(x)t2, 

where (MO, (., +),) is a Riemannian manifold, /l : MO + 58 is a smooth positive scalar 

field on MO, z = (x, t) E M and 5 = (6, t) E T,M = TxMo x R. 
The following lemma is needed to “translate” Theorem 3.2 in the coordinates (x, t). 

Lemma 4.1. Let z be a geodesic in M and c(s) = (c(s), t(s)) a Jacobi field satisfying 
(1.1). Then 

where D, is the covariant (Lurentzian) derivative with respect to (., .), and V, is the 
covariant (Riemannian) derivative with respect to (3, 3)X. 

ProojI Let a(s) = (c(s), [ (s))~, since < is a Jacobi field, differentiating gives: 

v’(s) = W(s), VJ(s)),, 
a”(s) = WM(sh W(s)), + W(s), V,2YW,, 

= WsT(s), &5(s)), - 2K(s), RN), S(s)>i(s)),. 

Evaluating at s = CT, since c(o) = 0, gives 

(16) 
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On theotherhand, computing in staticcoordinatesgivesq(s) = (c(s), <(s))~ = (4, ox- 
/?(x)t2. Differentiating gives 

q’(s) = 2(C> V&)X - (Vkl(x), x.jxr2 - 2B(x)rt, 

where V/3(x> is the gradient of B with respect to the Riemannian structure on MO. Differ- 
entiating again gives 

40”(S) = 207&T V,6), + 2@, V,‘Ux - 4(VB(x), xj,rr 

- H&3(x) [6,x] t - (VP(x), V,k),t2 - 2/qx>t2 - 2#I(x)tT, 

where HP(X) is the Hessian of /I with respect to the Riemannian structure of Mu. Then, 
evaluating at s = C, since c(a) = 0 and r(a) = 0, and using (16) gives the conclusion. ??

Remark 4.2. The analogous of (15) 

(D,T, &!%(a) = @(x(a), t(c))VJ, V,!Z),(c) - B(x(c), t(c))t2(c) (17) 

is still valid for a Lorentzian manifolds which admit an orthogonal splitting. 
We recall that an orthogonal splitting is a Lorentzian manifold M = MO x R with the 

metric tensor 

(CT !Y)Z = b(x, r)t9 .C)X - B((x, t))r2, 

where a(x, t) is a positive linear operator on TxMo, smoothly depending on z = (x, t) E 
M. 

Another case in which the general formula (2) takes a simple form is in the standard 
stationary case. We recall that a product manifold M = MO x [w is called a standard 
stationary if the metric tensor has the form: 

(53 5‘)2 = (49 0.X +2@(x), oxr - B(x)r2, 

where 6 (x) is a smooth vector field on MO. In this case we have 

(D,C, DJ)z(c) = (V&9 V&)x(c) +2@(x), VJ)x(a)r(a) 

- B(x(0t2(c). (18) 

In order to prove (17) and (18), it is sufficient to carry out the relative computations. 
Since they are simple, we omit them. 

We fix now two points zc = (xc, to), z1 = (xl, tl) in the static Lorentzian manifold 
(M, (., -)z), the geodesics joining zc and zi are the critical points of the action integral 

1 1 

f(z) = ; /(i, ijz ds = ; /1(x, x), - /3(x)t21ds 

0 0 

on the manifold 

Z1 = d(zo,zl,M) = Q'(xo,qMo) x &to,tl,W 
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The search of the critical points of the action integral can be reduced (in the static case) 
to the search of the critical points of the functional J : 52l (xo,xl,Mo) + [w defined by 

(cf. VI) 
1 

J(x) = s (i, i)x ds - 
(t1 - toI 

0 
#(l/B(x)) ds 

(19) 

(an analogous result holds for stationary Lorentzian manifolds, see [5]). Indeed a curve 
z = (x, t) E f2 1 (zo,zl,M) is a critical point of f if and only if x is a critical point of J on 
.(2’(xo,xl,Mo) and t is the unique solution of the problem 

-$(x)i) = 0, t(O) = to, t(1) = t1. (20) 

Solving (20) gives 

t(s) = to + r,’ ,:;,-,:“,) ds o 

r 1 

s B(x) dr’ 
(21) 

We set 

k, = 
t1 -to 

~;W#WW’ 
(22) 

Now, for any CT ~10, l] let z. = (x, , c t ) be the restriction of z to [0, CT]. The curve z. is a 
critical point of the functional 

fa(y, 0) = s ((8, $R - B(y)d2> ds, 
0 

(23) 

on the manifold 

2: = ~,&o,zW,M) = &(xo,x(d, MO) x ,n;(tO,t(a), R), 

where 

@(xo,x(a), MO) = Iy E H1~2([0, al, MO): ~(0) = x07 Y(C) = x(g)1 

and 

Lg(to,t(o), R) = (e E IP([O, a], R):e(o) = to, e(o) = t(a)}. 

A similar variational principle holds in 2; (cf. [3]), considering the functional 
J,, : L?~(xo,x(a), MO) + R given by 

cl 

s (t(a) - toI 
J,(Y) = o (Y, jl)~ ds - s,“(l,B(y>) ds. (24) 
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Indeed, za is a critical point of ffl if and only if x0 is a critical point of Jo and t,, 
solves 

$B(&)i,) = 0, t* (0) = to, rlJ(o) = t(a), 

i.e. 

Note that r#q, : @(xo,x@),Mo) + @h,th), W and 

t(a) - to 
&‘WB(xcd> ds 

= k, Va E]O, 11. 

(25) 

(26) 

A nonnull vector field 6 along x0. (with ((0) = 0 and t(c) = 0) is said to be a Jucobi$eZd 
along xc if 

J&K 6’1 = 0 ‘~‘4’ E L$~bo,x(d, MO). (27) 

In this case we say that x(a) is conjugate to x0 along x. The dimension of ker Jl(x,) is 
called the multiplicity of the conjugate point. As proved in [3], a vector field < = (6, t) is 
a Jacobi field along z0 with ((0) = 0 and t(g) = 0, if and only if 6 is a Jacobi field along 
x0 and t is the solution of the Cauchy problem 

$((Wx), 6)Ri + B(x)i) = 0, r(0) = to, t(a) = 0. (28) 

Moreover the multiplicity of x(a) is the same as the multiplicity of z(a). 
Let ~(a) be an eigenvalue of ./:(x0) and &, be a normalized eigenvector associated to 

~(a), i.e. 

J,%)[hn t;l = ~(0) J (to, 6:)Rds ‘6’ E G$:<xo,x(~), MO), (29) 

0 

and 
d 

s 
(&a, to)Rds = 1. 

0 

About the behavior of P(U), the analogous of Theorem 3.1 holds. 

Theorem 4.3. Let a0 ~10, l] and let x (a) be a conjugate point along x (having multiplicity 
1). Then 

$6'0) = -(~,~,,(~Oo)~v,~~~(~Oo))R +k%(~O))fq(~O)2, 

where to0 = 4&c%&%J (CT (25)). 
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Notice that in Theorem 3.3 we are assuming ,u(~) = 0. 
To get the proof of Theorem 4.3, the following lemma is needed. 

Lemma 4.4. Let &j E TX, 52: (x0,x(n), MO), then 

J&d~~ Cl = f&x, (1, 

where { = (6, t) and r = &(q,)[~]. 

Pro05 Clearly we can reduce to the case 0 = 1. Since J(x) = f(x, 4(x)), differentiating 
and setting t = @‘(x)[t] gives 

J’(x)El = fxb, 4(x))ll+ fib, 44~)>W(X>[~ll~ 

because fr (x, 4 (x)) = 0. Differentiating again gives 

J”(X)E? e1 = fXX(X> O(x)>E, t1+ f&(X> 4(x>)E9 4J’(xWl. 

On the other hand. 

f”(Z) [07 r) > (6, t>l = .fxx(z) E, ~1+2fx,(z) [e, t] + ftt(z) [r, r] . 
Since for any y, 

fr(Yt 4(Y)) [tl = 07 

differentiating with respect to y and evaluating at x gives 

fxr(z)[~, tl + fxt(zW(xX, tl = 0. 
Since t = $‘(x) [,$I we obtain the equality. 0 

Proof of Theorem 4.3. Since I_L (a) = Ji(xa) [&,, &,I, by Lemma 4.4 we get /I(U) = 
fl(xb)[&, , CD], where &, = (&, , &,(x,,) [&,I>. Then the proof follows immediately apply- 
ing Theorem 3.2 and Lemma 4.1. 0 

Finally we can prove Theorem 1.1. 

Proof of Theorem 1.1. 
(1) Standard computations show that if cr is sufficiently small, Jl(x,> is positive definite 

(cf. [9]). Therefore if x has a conjugate point and x(5) is the “first” conjugate point, 
we should have 

h(a)>Oifa<o and h(e)=O. (30) 

But since i is spacelike and dim M = 2, by Lemma 3.3 we have that D, {C is timelike. 
Then by Theorem 3.2 and Lemma 4.4, A’ (E) > 0, in contradiction with (30). 

(2) Under our assumptions, the Lorentzian manifold (M, g) is globally hyperbolic (cf. [6]), 
therefore if zu and zt are causally related (i.e. there exists a timelike curve joining 
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them), there is a timelike geodesic joining them. Then J has a critical point x such that 
J(x) < 0. Now if by contradiction there is a spacelike geodesic joining zc and zt , 

there is also a critical point y of J, with J(y) > 0. Moreover, by (1) and Lemma 4.4, 
y is a local minimum point. 

Since under our assumptions the functional J satisfies the Palais-Smale condition 
(cf. [2]), it follows by classical results of calculus of variations (see for instance [S]) 
that there is a third critical point 20 of J, such that J”(W) has an eigenvalue negative 
or null and J(W) > J(y) > 0. Then (w, #(w)) is a spacelike geodesic with conjugate 
points, in contradiction with (1). 

(3) If zu and zr are not causally related, any geodesic joining zo and zt is spacelike. 
Moreover, at least one (spacelike) geodesic joining zu and zr exists, since J achieves 
its minimum on 52’ (x0,x1, MO). If by contradiction there are at least two spacelike 
geodesics, by (1) they are local minimum, so as in (2), there is a third critical point 
w of J, with J(w) > 0 and such that J”(W) has an eigenvalue negative or null, in 
contradiction with (1). 

(4) It follows immediately from (2) and (3). 
This completes the proof. 0 
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